ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
J. A. Favorite, W. M. Stacey, Jr.
Nuclear Science and Engineering | Volume 125 | Number 1 | January 1997 | Pages 101-106
Technical Note | doi.org/10.13182/NSE97-A24258
Articles are hosted by Taylor and Francis Online.
A new variational functional for space-time neutronics is presented. This functional is stationary about the integro-differential form of the diffusion equation, in which the delayed neutron source is expressed as a convolution integral of the flux, and an integro-differential adjoint flux equation. The new functional is used to derive a quasi-static method that is similar to the improved quasistatic (IQS) method, except that the equation for the flux shape uses a different expression for the delayed neutron source. In a one-dimensional sub-prompt critical test problem, the new variational quasi-static method was slightly more accurate than the IQS method.