ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Hongyu Zhou, Guangshun Huang
Nuclear Science and Engineering | Volume 125 | Number 1 | January 1997 | Pages 61-74
Technical Paper | doi.org/10.13182/NSE97-A24254
Articles are hosted by Taylor and Francis Online.
Combining the usual prompt gamma radiation measurement technique and the lifetime correction method for delayed gamma radiation yield measurements allows the study of total discrete gamma radiation from 14.9-MeV neutron-induced 27Al(n,xγ) reactions. The following are identified: 21 prompt gamma lines from (n,n&primeγ), (n,αγ), (n, nαγ), (n,nαγ), (n,pnγ), (n,dγ), and (n,2nγ) reactions; 5 delayed gamma lines from one isomeric state produced in the (n, α) reaction; and the β- decay products of the residual nuclei in the (n,p) and (n, α) reactions. Their differential production cross sections at 55, 90, and 140 deg are determined simultaneously. Compared with previous experimental results, one sees a clear advantage in separating the delayed component from the mixed gamma-ray peaks, which consist of prompt and delayed gamma radiation; completely clean prompt gamma-ray production data are obtained. The accurate (n,p) cross sections and a preliminary (n, α) cross section are determined from relative differential production cross sections. They are in good agreement with the known activation data obtained from previous measurements and evaluations. The isomeric cross section for the 472.3-keV state of 24Na is also given. The present result shows that the total gamma radiation measurement method is valuable not only to acquire accurate gamma-ray production data but also to acquire accurate neutron activation data with a wide half-life range.