ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ARG-US Remote Monitoring Systems: Use Cases and Applications in Nuclear Facilities and During Transportation
As highlighted in the Spring 2024 issue of Radwaste Solutions, researchers at the Department of Energy’s Argonne National Laboratory are developing and deploying ARG-US—meaning “Watchful Guardian”—remote monitoring systems technologies to enhance the safety, security, and safeguards (3S) of packages of nuclear and other radioactive material during storage, transportation, and disposal.
J. E. Morel, K. D. Lathrop
Nuclear Science and Engineering | Volume 147 | Number 2 | June 2004 | Pages 158-166
Technical Paper | doi.org/10.13182/NSE04-A2425
Articles are hosted by Taylor and Francis Online.
The integral transport equation clearly indicates that the angular flux in a void is constant along each characteristic. Yet, simple arguments can be used to demonstrate that there exist angular flux solutions in voids that have a delta-function angular dependence and a nonconstant spatial dependence. Such solutions can appear to be nonconstant along a characteristic. Using a simple example problem, we demonstrate that such solutions represent the limit of a continuous sequence of nonsingular solutions, each of which is constant along every characteristic. We also show that care must be taken in applying the integral transport equation to singular problems of this type because erroneous solutions are easily obtained. Two reliable approaches for obtaining proper solutions are presented. We also show that the differential form of the transport equation in one-dimensional spherical geometry requires less care than the integral form of the transport equation for problems of this type. Finally, we discuss the applicability of the Sn method to problems in curvilinear geometries with singular solutions of this type.