ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
R. L. Perel, J. J. Wagschal, Y. Yeivin
Nuclear Science and Engineering | Volume 124 | Number 1 | September 1996 | Pages 197-209
Technical Paper | doi.org/10.13182/NSE96-A24235
Articles are hosted by Taylor and Francis Online.
Hall’s differential operator method for the Monte Carlo calculation of sensitivities was extended so as to apply to point-detector-type problems. By this method, the evaluation of the sensitivities of the detector response (or, equivalently, those of the neutron flux at the detector) to material parameters of interest (cross sections, average number of fission neutrons, number densities) is concurrent with that of the very response. In such a Monte Carlo game, the neutron histories, or paths, are sampled, collision by collision, and the calculated contributions of each collision to the response and to its partial derivatives with respect to the parameters of interest are accumulated. For each path, these sums are the estimates for the response and its respective sensitivities. The Monte Carlo evaluations are then the respective averages of the individual path estimates. This procedure was applied to the analysis of the time-of-flight spectra of the leakage from several of the Livermore pulsed spheres. As an illustration, measured and calculated spectra and some calculated sensitivities are depicted and discussed.