ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Biden executive order to facilitate AI data center power
As demand for artificial intelligence and data centers grows, President Biden issued an executive order yesterday aimed to ensure clean-energy power supply for the technology.
Deokjung Lee, Thomas J. Downar, Yonghee Kim
Nuclear Science and Engineering | Volume 147 | Number 2 | June 2004 | Pages 127-147
Technical Paper | doi.org/10.13182/NSE03-64
Articles are hosted by Taylor and Francis Online.
The convergence rates of the nonlinear coarse-mesh finite difference (CMFD) method and the coarse-mesh rebalance (CMR) method are derived analytically for one-dimensional, one-group solutions of the fixed-source diffusion problem in a nonmultiplying infinite homogeneous medium. The derivation was performed by linearizing the nonlinear algorithm and by applying Fourier error analysis to the linearized algorithm. The mesh size measured in units of the diffusion length is shown to be a dominant parameter for the convergence rate and for the stability of the iterative algorithms. For a small mesh size problem, the nonlinear CMFD is shown to be a more effective acceleration method than CMR. Both CMR and two-node CMFD algorithms are shown to be unconditionally stable. However, the one-node CMFD becomes unstable for large mesh sizes. To remedy this instability, an underrelaxation of the current correction factor for the one-node CMFD method is successfully introduced, and the domain of stability is significantly expanded. Furthermore, the optimum underrelaxation parameter is analytically derived, and the one-node CMFD with the optimum relaxation is shown to be unconditionally stable.