ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
José M. Aragonés, Carol Ahnert, Oscar Cabellos
Nuclear Science and Engineering | Volume 124 | Number 1 | September 1996 | Pages 111-124
Technical Paper | doi.org/10.13182/NSE96-A24228
Articles are hosted by Taylor and Francis Online.
New reactor physics and computation methods have been developed in our three-dimensional pressurized water reactor (PWR) core dynamics SIMTRAN code for on-line surveillance and prediction. The accuracy of the coupled neutronic thermal-hydraulic solution is improved, and its scope is extended to provide, mainly, the calculation of the fission reaction rates at the in-core minidetectors, the responses at the ex-core detectors, and the in-vessel coolant flow and temperature distributions.The functional capabilities implemented in the on-line SIMTRAN code include on-line surveillance, in-core-ex-core calibration, evaluation of peak power factors and thermal margins, nominal cycle follow, prediction of maneuvers, and diagnosis offast transients and oscillations. The new code has been operating on-line at the Vandellós-II PWR unit in Spain since the startup of its cycle 7 in mid-June 1994, including the machine-man interfaces for on-line acquisition of measured data and interactive graphical utilization. The agreement of the simulations with the measurements, along the full cycle 7 and the first months of cycle 8 operation, is well within the accuracy requirements. The performance and usefulness for operational support shown during the demo and routine use phases have proved that the on-line SIMTRAN code has the qualities for the accurate, reliable, comprehensive, and user-friendly on-line core surveillance and prediction.