ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
J. P. Hennart, E. M. Malambu, E. H. Mund
Nuclear Science and Engineering | Volume 124 | Number 1 | September 1996 | Pages 97-110
Technical Paper | doi.org/10.13182/NSE96-A24227
Articles are hosted by Taylor and Francis Online.
Several polynomial finite elements of nodal type are introduced that should lead to convergence of O(h1) in the L2 norm. Two of these methods are new and are expected to achieve the same orders of convergence with fewer parameters than the third method. They are applied to the one-group diffusion equation under different formulations, namely, several versions (with or without reduced and transverse integrations) of the primal and the mixed-hybrid formulations. Convergence rates are checked for a model problem with an analytical solution. Two of these methods exhibit superconvergence phenomena [O(h4) instead of O(h3)], a fact that can be explained heuristically. The most promising method, with only five parameters per cell, turns out to yield only O(h2) in its most algebraically efficient versions, while it has the potential of O(h3) convergence rates. Again, an explanation is given for this behavior and a fully O(h3) version is developed. Finally, these methods are applied to more realistic multigroup situations. In all cases, they are compared with results obtained from polynomial nodal methods in response matrix formalism. In the multigroup case, a well-known reference solution is also used.