ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
S. M. Ghiaasiaan, J. D. Bohner, S. I. Abdel-Khalik
Nuclear Science and Engineering | Volume 123 | Number 1 | May 1996 | Pages 136-146
Technical Paper | doi.org/10.13182/NSE96-A24218
Articles are hosted by Taylor and Francis Online.
Countercurrent flow limitation in channels with evaporation taking place inside them is examined. Countercurrent flow limitation in short, small-diameter channels subject to purely axial, purely radial, and combined axial and radial gas injection is studied. Experiments were performed using air and water, with channel diameters 0.475 to 1.91 cm and channel lengths 1.27 to 5.72 cm. Purely axial gas injection data are shown to agree with Wallis’s correlation but with coefficients that strongly depend on channel dimensions. Purely radial gas injection data and data obtained with combined axial and radial gas injection result in flooding curves significantly different from those representing the purely axial gas injection data and indicate that near complete flooding (zero liquid penetration) can occur in small-diameter and short channels due to relatively small radial gas injection rates. Flooding curves for long or large-diameter channels are insensitive to the gas injection configuration, however.