ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Nuclear waste: Trying again, with an approach that is flexible and vague
The Department of Energy has started over on the quest for a place to store used fuel. Its new goal, it says, is to foster a national conversation (although this might better be described as many local conversations) about a national problem that can only be solved at the local level with a “consent-based” approach. And while the department is touting the various milestones it has already reached on the way to an interim repository, the program is structured in a way that means its success will not be measurable for years.
S. M. Ghiaasiaan, J. D. Bohner, S. I. Abdel-Khalik
Nuclear Science and Engineering | Volume 123 | Number 1 | May 1996 | Pages 136-146
Technical Paper | doi.org/10.13182/NSE96-A24218
Articles are hosted by Taylor and Francis Online.
Countercurrent flow limitation in channels with evaporation taking place inside them is examined. Countercurrent flow limitation in short, small-diameter channels subject to purely axial, purely radial, and combined axial and radial gas injection is studied. Experiments were performed using air and water, with channel diameters 0.475 to 1.91 cm and channel lengths 1.27 to 5.72 cm. Purely axial gas injection data are shown to agree with Wallis’s correlation but with coefficients that strongly depend on channel dimensions. Purely radial gas injection data and data obtained with combined axial and radial gas injection result in flooding curves significantly different from those representing the purely axial gas injection data and indicate that near complete flooding (zero liquid penetration) can occur in small-diameter and short channels due to relatively small radial gas injection rates. Flooding curves for long or large-diameter channels are insensitive to the gas injection configuration, however.