ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
B.D. Ganapol, G. C. Pomraning
Nuclear Science and Engineering | Volume 123 | Number 1 | May 1996 | Pages 110-120
Technical Paper | doi.org/10.13182/NSE96-A24216
Articles are hosted by Taylor and Francis Online.
We consider the two-region Milne problem, defined as the steady-state monoenergetic linear transport problem for two adjoining homogeneous source-free half-spaces, with a particle source coming from infinity in one of the half-spaces. We demonstrate that the asymptotic (Case discrete mode) component of the solution for the scalar flux is easily and explicitly written in terms of Chandrasekhar’s H-function for each medium. This asymptotic solution is shown to exhibit a discontinuity in both the scalar flux and current at the interface between the two half-spaces. Numerical benchmark results for the linear extrapolation distance and the discontinuities are given for various combinations of the mean number of secondaries (c) characterizing the two media. Contact is also made with a variational treatment. In particular, the variational formalism is shown to predict the linear extrapolation distance and these asymptotic discontinuities correct to first order in the difference between the values of c characterizing the two half-spaces.