ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Diablo Canyon gets key state approval
Pacific Gas & Electric has announced that the California Coastal Commission, the state agency in charge of protecting California’s roughly 840 miles of coastline, unanimously voted to approve the Act Consistency Certification and Coastal Development Permit for Diablo Canyon, a critical step in the utility’s work to extend the life of the nuclear power plant.
B.D. Ganapol, G. C. Pomraning
Nuclear Science and Engineering | Volume 123 | Number 1 | May 1996 | Pages 110-120
Technical Paper | doi.org/10.13182/NSE96-A24216
Articles are hosted by Taylor and Francis Online.
We consider the two-region Milne problem, defined as the steady-state monoenergetic linear transport problem for two adjoining homogeneous source-free half-spaces, with a particle source coming from infinity in one of the half-spaces. We demonstrate that the asymptotic (Case discrete mode) component of the solution for the scalar flux is easily and explicitly written in terms of Chandrasekhar’s H-function for each medium. This asymptotic solution is shown to exhibit a discontinuity in both the scalar flux and current at the interface between the two half-spaces. Numerical benchmark results for the linear extrapolation distance and the discontinuities are given for various combinations of the mean number of secondaries (c) characterizing the two media. Contact is also made with a variational treatment. In particular, the variational formalism is shown to predict the linear extrapolation distance and these asymptotic discontinuities correct to first order in the difference between the values of c characterizing the two half-spaces.