ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
A wave of new U.S.-U.K. deals ahead of Trump’s state visit
President Trump will arrive in the United Kingdom this week for a state visit that promises to include the usual pomp and ceremony alongside the signing of a landmark new agreement on U.S.-U.K. nuclear collaboration.
David C. Losey, John C. Lee, William R. Martin, Thomas C. Adamson, Jr.
Nuclear Science and Engineering | Volume 123 | Number 1 | May 1996 | Pages 68-85
Technical Paper | doi.org/10.13182/NSE96-A24213
Articles are hosted by Taylor and Francis Online.
A singular perturbation technique is applied to the time-independent one-dimensional neutron transport equation with isotropic neutron scattering. The technique reduces the transport problem to a series of diffusion theory problems in the interior medium and a series of simplified transport problems solved analytically in the boundary layer. The analysis provides a consistent method for deriving and comparing various diffusion theory approximations to the transport equation. In addition, the resulting scheme provides a systematic method for enhancing the accuracy of diffusion theory calculations of global flux distributions. A general asymptotic expansion of c, the number of secondary neutrons per collision, is obtained and an O(ε2) correction to the diffusion theory boundary condition at a material interface is derived. The perturbation technique has been applied analytically to both fixed source and criticality problems. The technique is also incorporated in a multigroup diffusion theory computer code. In test calculations, the error in flux distributions is reduced to about one-half that achieved with standard diffusion theory techniques.