ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Taewan Noh, Warren F. Miller, Jr., Jim E. Morel
Nuclear Science and Engineering | Volume 123 | Number 1 | May 1996 | Pages 38-56
Technical Paper | doi.org/10.13182/NSE96-A24211
Articles are hosted by Taylor and Francis Online.
The finite element and lumped finite element methods for the spatial differencing of the even-parity discrete ordinates neutron transport equations (EPSN) in two-dimensional x-y geometry are applied. In addition, the simplified even-parity discrete ordinates equations (SEPSN) as an approximation to the EPSN transport equations are developed. The SEPSN equations are more efficient to solve than the EPSN equations due to a reduction in angular domain of one-half, the applicability of a simple five-point diffusion operator, and directionally uncoupled reflective boundary conditions. Furthermore, the SEPSN equations satisfy the same diffusion limits as EPSN in an optically thick regime, appear to have no ray effect, and converge faster than EPSN when using a diffusion synthetic acceleration (DSA). Also, unlike the case of EPSN, the SEPSN solutions are strictly positive, thus requiring no negative flux fixups. It is also demonstrated that SEPSN is a generalization of the simplified PN method. Most importantly, in these second-order approaches, an unconditionally effective DSA scheme can be achieved by simply integrating the differenced EPSN and SEPSN equations over the angles. It is difficult to obtain a consistent DSA scheme with the first-order SN equations. This is because a second-order DSA equation must generally be derived directly from the differenced first-order SN equations.