ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
M. B. Chadwick, L. J. Cox, P. G. Young, A.S. Meigooni
Nuclear Science and Engineering | Volume 123 | Number 1 | May 1996 | Pages 17-37
Technical Paper | doi.org/10.13182/NSE96-A24210
Articles are hosted by Taylor and Francis Online.
We present an evaluation of the interaction of neutrons with energies between 20 and 100 MeV with carbon nuclei. Our aim is to accurately represent integrated cross sections, inclusive emission spectra, and kerma factors, in a data library for use in radiation transport simulations offast neutron radiotherapy. We apply the Feshbach-Kerman-Koonin-GNASH nuclear model code, which includes Hauser-Feshbach, pre-equilibrium, and direct reaction mechanisms, and use experimental measurements to optimize the calculations. We determine total, elastic, and nonelastic cross sections; angle-energy-correlated emission spectra for light ejectiles with A ≤ 4 and gamma rays; and average energy depositions. Coupled-channel optical model calculations describe the total, elastic, and nonelastic cross sections well. Our results for charged-particle emission spectra agree fairly well with University of California-Davis as well as new Los Alamos National Laboratory and Louvain-la-Neuve measurements. We compare our results with the recent ENDF/B-VI evaluation and argue that some of the exclusive channels between 20 and 32 MeV should be modified. We also compare kerma factors derived from our evaluated cross sections with the measurements, providing an integral benchmark for our work. The evaluated data libraries are available as electronic files.