ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
Budhi Sagar
Nuclear Science and Engineering | Volume 123 | Number 3 | July 1996 | Pages 443-454
Technical Paper | doi.org/10.13182/NSE96-A24207
Articles are hosted by Taylor and Francis Online.
Assessing long-term performance of geologic repositories requires simulation of flow through heterogeneous geologic formations. The effect on flow field of discontinuities such as fracture zones in such media is not only of interest to waste management professionals but also to those involved in petroleum engineering and water resources development. Significant differences in the space and time scales associated with these discontinuities as compared with those associated with bulk geology cause special problems in modeling. The modeling problems are in addition to the very practical problem inherent in proper topological characterization of the discontinuities and also in field measurement of their flow and transport properties. After briefly reviewing various generally used classes of methods for accommodating heterogeneities represented by fractures in numerical models, a different technique of deriving mass balance equations in the presence of fractures is discussed. Compared with full representation of fractures, the proposed technique provides coarser resolution of the flow field, but it is relatively computationally efficient. Two examples of its application are also provided.