ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
Han Gyu Joo,Thomas J. Downar
Nuclear Science and Engineering | Volume 123 | Number 3 | July 1996 | Pages 403-414
Technical Paper | doi.org/10.13182/NSE96-A24203
Articles are hosted by Taylor and Francis Online.
Methods are proposed for the efficient parallel solution of nonlinear nodal kinetics equations. Because the two-node calculation in the nonlinear nodal method is naturally parallelizable, the majority of the effort is devoted to the development of parallel methods for solving the coarse-mesh finite difference (CMFD) problem. A preconditioned Krylov subspace method (biconjugate gradient stabilized) is chosen as the iterative algorithm for the CMFD problem, and an efficient parallel preconditioning scheme is developed based on domain decomposition techniques. An incomplete lower-upper triangular factorization method is first formulated for the coefficient matrices representing each three-dimensional subdomain, and coupling between subdomains is then approximated by incorporating only the effect of the nonleakage terms of neighboring subdomains. The methods are applied to fixed-source problems created from the International Atomic Energy Agency three-dimensional benchmark problem. The effectiveness of the incomplete domain decomposition preconditioning on a multiprocessor is evidenced by the small increase in the number of iterations as the number of sub-domains increases. Through the application to both CMFD-only and nodal calculations, it is demonstrated that speedups as large as 49 with 96 processors are attainable in the nonlinear nodal kinetics calculations.