ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
Taek Kyum Kim, Chang Hyo Kim
Nuclear Science and Engineering | Volume 123 | Number 3 | July 1996 | Pages 381-391
Technical Paper | doi.org/10.13182/NSE96-A24201
Articles are hosted by Taylor and Francis Online.
A method for determining the mathematical adjoint solution of a higher order nodal expansion method (NEM) based on the simultaneous solution of multigroup equations for each node in the rectangular geometry is presented. In the higher order NEM, the forward NEM equations in a given node include not only the nodal balance and interface-current equations but also weighted residual method (WRM) equations for higher order expansion coefficients. In deriving the mathematical adjoint equations corresponding to these forward NEM equations, the transverse leakage terms in the WRM equations need to be replaced by partial currents. Because transverse leakage terms of a node are linked to partial currents of many neighboring nodes, replacement of transverse leakage terms by partial currents results in complicated WRM equations. Because mathematical adjoint equations are obtained by transposing the nodal forward equations, direct use of these complicated WRM equations makes the numerical computation of the adjoint solution inefficient. This problem is avoided by treating the transverse leakage terms contained in the WRM equations as additional unknowns and by including the equations defining the transverse leakage terms in terms of partial currents into the nodal forward equations. The mathematical adjoint equations are then derived by transposing the resulting nodal forward equations. This adjoint solution method is verified by comparing nodal adjoint fluxes with the fine-mesh VENTURE solution for the International Atomic Energy Agency (IAEA) pressurized water reactor (PWR) benchmark problem and by comparing the local reactivity changes computed with first-order perturbation theory for the IAEA PWR and the Yonggwang unit 2 PWR with the exact reactivity values determined from the eigenvalue difference between perturbed and unperturbed cores.