ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Edward W. Larsen, J. E. Morel, John M. McGhee
Nuclear Science and Engineering | Volume 123 | Number 3 | July 1996 | Pages 328-342
Technical Paper | doi.org/10.13182/NSE123-328
Articles are hosted by Taylor and Francis Online.
The multigroup P1 and simplified PN (SPN) equations are derived by an asymptotic expansion of the multigroup transport equation with anisotropic scattering. The P1 equations are the leading-order approximation in this expansion; the SPN equations for N = 2,3,… are increasingly higher order approximations. The physical assumptions underlying these approximations are that the material system is optically thick, the probability of absorption is small, and the mean scattering angle is not close to unity. For multigroup isotropic scattering transport problems, a dispersion analysis is given that verifies the accuracy of the SPN approximations. Numerical comparisons of P1, SPN, and SN solutions are also given. These comparisons show that for low N, SPN solutions are significantly more accurate (transportlike) than P1 solutions and are obtained at a significantly lower computational cost than SN solutions.