ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
Tsung-Kuang Yeh, Digby D. Macdonald
Nuclear Science and Engineering | Volume 123 | Number 2 | June 1996 | Pages 305-316
Technical Paper | doi.org/10.13182/NSE96-A24192
Articles are hosted by Taylor and Francis Online.
The DAMAGE-PREDICTOR computer code, which has the capability of simultaneously estimating the concentrations of radiolysis species, the electrochemical corrosion potential (ECP), and the crack growth rate (CGR) of a reference crack in sensitized Type 304 stainless steel, is used to evaluate the responses of the Dresden-2 and Duane Arnold boiling water reactors (BWRs) to hydrogen water chemistry (HWC) at different power levels. The HWC simulations for these two BWRs are carried out for feedwater hydrogen concentration ([H2]fw) ranging from 0.0 to 2.0 parts per million and for power levels at 100, 90, 80, and 70%. Variations in the oxygen, hydrogen peroxide, and hydrogen concentrations; ECP; and CGR for four specific areas (the side of the core shroud head, the base of the core shroud, the recirculation system outlet, and the bottom of the lower plenum) as a function of the feedwater hydrogen concentration and power level are analyzed. It is found that lower power levels alleviate the amount of hydrogen injected into the feedwater that is required to protect the reactor components from intergranular stress corrosion cracking. HWC is particularly effective in protecting the base of the core shroud and the recirculation system outlet but is only moderately effective in protecting the bottom of the lower plenum. On the other hand, the ECP and the CGR at the side of the core shroud head seem to be indifferent to both the operating power level and the feedwater hydrogen concentration.