ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Ion Tiseanu, Teddy Craciunescu
Nuclear Science and Engineering | Volume 122 | Number 3 | March 1996 | Pages 384-394
Technical Paper | doi.org/10.13182/NSE96-A24173
Articles are hosted by Taylor and Francis Online.
A comparison of five methods for the reconstruction of the time-resolved neutron energy spectrum of short-pulsed neutron sources from time-of-flight measurements is reported. The first method is an analog Monte Carlo reconstruction technique (AMCRT), expressly designed for the optimization of such measurements. It was proved that the studied problem can be treated as a tomographic one with a limited data set. A Fourier convolution and backprojection method and three other tomographic methods, which have been shown to work with a limited data set, are used: the maximum entropy method, the algebraic reconstruction technique, and a Monte Carlo implementation of the backprojection (MCBP) technique. Through numerical tests, the quality of reconstructions in different image geometries at various noise levels has been studied. Besides the AMCRT method, which produces the best results, good reconstructions are also obtained using MCBP and maximum entropy. If computing time must be minimized, the maximum entropy algorithm is most convenient. This algorithm could be used routinely in time-resolved spectroscopy measurements.