ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
Christophe Suteau, Maurice Chiron, Gilles Arnaud
Nuclear Science and Engineering | Volume 147 | Number 1 | May 2004 | Pages 43-55
Technical Paper | doi.org/10.13182/NSE04-A2417
Articles are hosted by Taylor and Francis Online.
This study proposes an improvement of the general formalism for calculating gamma-ray buildup factors in multilayer shields developed by Assad et al. The main modification concerns the treatment of the double-layer shield formed by the two first layers of a multilayer shield. Instead of replacing the double-layer shield with an equivalent thickness of the layer of the second material, the improved general formalism replaces it with a single-layer shield made of an appropriate material. The determination of the appropriate material is implemented into MERCURE-6.1 thanks to neural networks trained on a large set of various configurations.One-dimensional comparisons with the TWODANT transport Sn code shows the accuracy of the new formalism for shields composed of three and five layers. Indeed, for three-layer shields with an infinitesimal second layer and for multilayer shields composed of numerous thin layers (more than 15), MERCURE-6.1 matches the reference data quite well. The MERCURE-6.1 ability to solve three-dimensional realistic cases is highlighted by comparisons to the TRIPOLI-4 and MCNP-4C Monte Carlo codes.