ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
S. Das
Nuclear Science and Engineering | Volume 122 | Number 3 | March 1996 | Pages 344-358
Technical Paper | doi.org/10.13182/NSE96-A24169
Articles are hosted by Taylor and Francis Online.
The method of point reactor kinetics in conjunction with the new concepts of delayed spectrum factor and beta growth factor is used to calculate the sensitivity of the dynamic behavior of a fast breeder reactor to large changes in delayed neutron energies following postulated reactivity accidents. The positive ramp rates are introduced not to simulate physical possibilities but solely to test the sensitivity to delayed neutron spectral changes under different conditions. A limited number of transient calculations are made using the point-kinetics code SENSTVTY, six precursor groups, and Doppler feedback. The calculational method and the reactor model are described. Delayed neutron requirements in reactor dynamics are discussed, and a brief review of the sensitivity studies is presented. The results of the sensitivity calculations indicate that the relative power, the peak power, and the accident energy release are sensitive to changes in βeff resulting from uncertainty in the delayed spectral data, but the sensitivity of the relative power is much greater than the peak power and the accident energy release. The spread in the maximum reactivity reached is found to be ∼18%, and the time spread in the melting of fuel and cladding is in milliseconds.