ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
R. P. Gardner, C. L. Barrett, W. Haq, D. E. Peplow
Nuclear Science and Engineering | Volume 122 | Number 3 | March 1996 | Pages 326-343
Technical Paper | doi.org/10.13182/NSE96-A24168
Articles are hosted by Taylor and Francis Online.
A Monte Carlo code named Mcnaff has been developed and tested for flow rate measurement and general composition determination of a flowing fluid by neutron activation analysis. Specifically, oxygen determination in a flowing fluid is treated, including simulating the emission and transport of neutrons in the fluid, the activation of l6O to 16N, the subsequent flow and dispersion of the 16N in the flow channel, the downstream decay of 16N, and the subsequent detection of the emitted decay gamma rays. This code is very efficient, partly because (a) the continuous single history approach has been taken, which follows a single history from emission of a neutron, through the production and decay of the 16N and the emission of a characteristic gamma ray, and finally to the full energy detection of the gamma ray and (b) the principle of forcing can be and is used throughout so that almost every history results in a partial success. The present Mcnaff code is capable of calculating gamma-ray detection yields per neutron emitted to the same accuracy as an approach by Perez-Griffo, Block, and La hey, which numerically solves the partial differential equations for modeling particle dispersion and diffusion and calculates separately by Monte Carlo both the neutron absorption and gamma-ray detection process. The Mcnaff code is estimated to be about two orders of magnitude faster and should be more convenient to use because all calculations are accomplished in a single step.