ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
R. P. Gardner, C. L. Barrett, W. Haq, D. E. Peplow
Nuclear Science and Engineering | Volume 122 | Number 3 | March 1996 | Pages 326-343
Technical Paper | doi.org/10.13182/NSE96-A24168
Articles are hosted by Taylor and Francis Online.
A Monte Carlo code named Mcnaff has been developed and tested for flow rate measurement and general composition determination of a flowing fluid by neutron activation analysis. Specifically, oxygen determination in a flowing fluid is treated, including simulating the emission and transport of neutrons in the fluid, the activation of l6O to 16N, the subsequent flow and dispersion of the 16N in the flow channel, the downstream decay of 16N, and the subsequent detection of the emitted decay gamma rays. This code is very efficient, partly because (a) the continuous single history approach has been taken, which follows a single history from emission of a neutron, through the production and decay of the 16N and the emission of a characteristic gamma ray, and finally to the full energy detection of the gamma ray and (b) the principle of forcing can be and is used throughout so that almost every history results in a partial success. The present Mcnaff code is capable of calculating gamma-ray detection yields per neutron emitted to the same accuracy as an approach by Perez-Griffo, Block, and La hey, which numerically solves the partial differential equations for modeling particle dispersion and diffusion and calculates separately by Monte Carlo both the neutron absorption and gamma-ray detection process. The Mcnaff code is estimated to be about two orders of magnitude faster and should be more convenient to use because all calculations are accomplished in a single step.