ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
Milo R. Dorr, Charles H. Still
Nuclear Science and Engineering | Volume 122 | Number 3 | March 1996 | Pages 287-308
Technical Paper | doi.org/10.13182/NSE96-A24166
Articles are hosted by Taylor and Francis Online.
A strategy for implementing source iteration on massively parallel computers for use in solving multigroup discrete ordinates neutron transport equations on three-dimensional Cartesian grids is proposed and analyzed. Based on an analysis of the memory requirement and floating-point complexity of the formal matrix-vector multiplication effected by a single source iteration, a data decomposition and communication strategy is presented that is designed to achieve good scalability with respect to all phase-space variables, i.e., neutron position, energy, and direction. A performance model is developed to analyze the scalability properties of the algorithm and to provide computational and heuristic strategies for determining a data decomposition that minimizes wall clock execution time. Numerical results are presented to demonstrate the performance of a specific implementation of this approach on a 1024-node nCUBE/2.