ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
Milo R. Dorr, Charles H. Still
Nuclear Science and Engineering | Volume 122 | Number 3 | March 1996 | Pages 287-308
Technical Paper | doi.org/10.13182/NSE96-A24166
Articles are hosted by Taylor and Francis Online.
A strategy for implementing source iteration on massively parallel computers for use in solving multigroup discrete ordinates neutron transport equations on three-dimensional Cartesian grids is proposed and analyzed. Based on an analysis of the memory requirement and floating-point complexity of the formal matrix-vector multiplication effected by a single source iteration, a data decomposition and communication strategy is presented that is designed to achieve good scalability with respect to all phase-space variables, i.e., neutron position, energy, and direction. A performance model is developed to analyze the scalability properties of the algorithm and to provide computational and heuristic strategies for determining a data decomposition that minimizes wall clock execution time. Numerical results are presented to demonstrate the performance of a specific implementation of this approach on a 1024-node nCUBE/2.