ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Inkjet droplets of radioactive material enable quick, precise testing at NIST
Researchers at the National Institute of Standards and Technology have developed a technique called cryogenic decay energy spectrometry capable of detecting single radioactive decay events from tiny material samples and simultaneously identifying the atoms involved. In time, the technology could replace characterization tasks that have taken months and could support rapid, accurate radiopharmaceutical development and used nuclear fuel recycling, according to an article published on July 8 by NIST.
Milo R. Dorr, Charles H. Still
Nuclear Science and Engineering | Volume 122 | Number 3 | March 1996 | Pages 287-308
Technical Paper | doi.org/10.13182/NSE96-A24166
Articles are hosted by Taylor and Francis Online.
A strategy for implementing source iteration on massively parallel computers for use in solving multigroup discrete ordinates neutron transport equations on three-dimensional Cartesian grids is proposed and analyzed. Based on an analysis of the memory requirement and floating-point complexity of the formal matrix-vector multiplication effected by a single source iteration, a data decomposition and communication strategy is presented that is designed to achieve good scalability with respect to all phase-space variables, i.e., neutron position, energy, and direction. A performance model is developed to analyze the scalability properties of the algorithm and to provide computational and heuristic strategies for determining a data decomposition that minimizes wall clock execution time. Numerical results are presented to demonstrate the performance of a specific implementation of this approach on a 1024-node nCUBE/2.