ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
E. E. Lewis, C. B. Carrico, G. Palmiotti
Nuclear Science and Engineering | Volume 122 | Number 2 | February 1996 | Pages 194-203
Technical Paper | doi.org/10.13182/NSE96-1
Articles are hosted by Taylor and Francis Online.
The variational nodal formulation of the neutron transport equation is generalized to provide spherical harmonics approximations of arbitrary odd order. The even angular parity trial functions within the nodes are complemented by new odd angular parity trial functions at the node interfaces. These are derived from the spherical harmonic continuity conditions presented in the classical work of Rumyantsev. The Yn±n terms are absent for all odd n in the resulting odd-parity trial function sets. This result is shown to be equivalent to requiring the variational nodal matrix that couples even- and odd-parity angular trial functions to be of full rank and yields vacuum and reflected boundary conditions as well as nodal interface conditions within the framework of the variational formulation. Nodal P1, P3, and P5 approximations are implemented in the Argonne National Laboratory code VARIANT, utilizing the existing spatial trial functions in x-y geometry. The accuracy of the approximations is demonstrated on model fixed source and few-group eigenvalue problems. The new interface trial functions have no effect on P1 approximations and yield P3 results that differ very little from those obtained with existing trial functions, even where the P5 approximation leads to further improvement. More significantly, the new trial functions allow P5 or higher order algorithms to be implemented in a consistent straightforward manner.