ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
Bojan G. Petrovic, Alireza Haghighat
Nuclear Science and Engineering | Volume 122 | Number 2 | February 1996 | Pages 167-193
Technical Paper | doi.org/10.13182/NSE96-3
Articles are hosted by Taylor and Francis Online.
An accurate prediction of the reactor pressure vessel (PV) fast neutron fluence (E> 1.0 MeV or E> 0.1 MeV) is necessary to ensure PV integrity over the design lifetime. The discrete ordinates method (SN method) is the method of choice to treat such problems, and the DORT SN code is widely used as a standard tool for PV fluence calculations. The SN numerics and the corresponding DORT numerical options and features offer alternative choices that increase flexibility but also impact results. The effects of SN numerics based on PV fluence calculations for two pressurized water reactors are examined. The differencing schemes [linear, zero-weighted (ZW), and θ-weighted (TW)] and their interactions with spatial and angular discretization are also examined. The linear and TW ( θ = 0.9) schemes introduce unphysical flux oscillations that for certain groups and positions may exceed 10%. The ZW scheme produces smooth results; however, its results differ from the other two schemes. A good compromise for PV fluence calculations is a TW scheme with a small θ value (i.e., θ = 0.3), which reduces the uncertainty to ∼3%. Angular discretization and spatial mesh size employed in typical calculations introduce another ∼3 and ∼2% uncertainty, respectively. The analysis further shows that the fixup is not necessary for the negative scattering source. The pointwise convergence criterion is also not a critical issue in the fast energy range because of a relatively fast convergence rate. Similarly, acceleration parameters impact mainly the execution time and only marginally the results. The root-mean-square combined uncertainty for standard PV fluence calculations due to the options analyzed is ∼5%.