ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Pavel Hejzlar, Michael J. Driscoll, Neil E. Todreas
Nuclear Science and Engineering | Volume 121 | Number 3 | December 1995 | Pages 448-460
Technical Paper | doi.org/10.13182/NSE95-A24146
Articles are hosted by Taylor and Francis Online.
A light water cooled and moderated pressure tube reactor concept has been developed that can survive loss-of-coolant accidents (LOCAs) without scram and without replenishing primary coolant inventory, while maintaining safe temperature limits on the fuel and pressure tube. The reactor employs a solid SiC-coated graphite fuel matrix in the pressure tubes and a calandria tank containing a low-pressure gas, surrounded by a graphite reflector. This normally voided calandria is connected to a light water heat sink. The cover gas displaces light water from the calandria during normal operation, while during LOCAs it allows passive calandria flooding. It is shown that such a system, with high void fraction in the core region, exhibits a high degree of neutron thermalization and a large prompt neutron lifetime, similar to D2O moderated cores, although light water is used as both coolant and moderator. Moreover, the extremely large neutron migration length results in a strongly coupled core with a flat thermal flux profile and inherent stability against xenon spatial oscillations. The heterogeneous arrangement of the fuel and moderator ensures a negative void coefficient under all circumstances. Flooding of the calandria space with light water results in redundant reactor shutdown. Use of particle fuel allows attainment of high burnups.