ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
Stanley S. Glickstein, William H. Vance, Hansem Joo
Nuclear Science and Engineering | Volume 121 | Number 1 | September 1995 | Pages 153-161
Technical Paper | doi.org/10.13182/NSE95-A24137
Articles are hosted by Taylor and Francis Online.
Real-time neutron radiography is being evaluated for studying the dynamic behavior of two-phase flow and for measuring void fraction in vertical and inclined water ducts. This technique provides a unique means of visualizing the behavior of fluid flow inside thick metal enclosures. An air-water flow system was constructed to simulate vapor conditions encountered in a fluid flow duct Air was injected into the bottom of the duct at flow rates up to 0.47 /s (1 ft3/min). The water flow rate was varied between 0 and 3.78 /min (0 to 1 gal/min). The experiments were performed at the Pennsylvania State University nuclear reactor facility using a real-time neutron radiography camera. With a thermal neutron flux on the order of 106 n/cm2.s-1 directed through the thin duct dimension, the dynamic behavior of the air bubbles was clearly visible through 5-cm (2-in.)-thick aluminum support plates placed on both sides of the duct wall. Image analysis techniques were employed to extract void fractions from the data, which were recorded on videotape. This consisted of time averaging 256 video frames and measuring the gray level distribution throughout the region. The distribution of the measured void fraction across the duct was determined for various air-water mixtures. Details of the results of experiments for a variety of air and water flow conditions are presented.