ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
J. R. Seeker, R. W. Miller, L. T. Mayhue, R. N. Milanova
Nuclear Science and Engineering | Volume 121 | Number 1 | September 1995 | Pages 142-152
Technical Paper | doi.org/10.13182/NSE95-A24136
Articles are hosted by Taylor and Francis Online.
Advanced fuel, burnable absorber, and control rod designs along with advanced fuel management and power distribution control strategies will be implemented in the first operating cycle of the Czech Republic’s Temelin VVER-1000 nuclear power plants. These improvements increase safety margins, enhance operability, and improve fuel efficiency. The Westinghouse WANTAGE 6 fuel assembly design incorporates many proven advanced fuel and core design features used extensively in western pressurized water reactors. The fuel assembly incorporates mixing vane structural grids, radial enrichment zoning, ZrB2 integral fuel burnable absorbers, axial blankets, and Zircaloy guide thimbles and structural grids. Low-leakage loading patterns are also used to reduce radial neutron leakage. The rod cluster control assembly (RCCA) design incorporates two absorber materials. The absorber tip uses silver-indium-cadmium material while the remainder of the absorber material is B4C enriched in 10B. This design increases control rod worth as well as the usable lifetime of RCCA. The Westinghouse constant axial offset control operating strategy, improved RCCA design, modified RCCA overlap, and replacement of part-length RCCA by full-length RCCA are used to improve the axial power distribution control capability for VVER-1000 reactors. These design improvements provide thermal margin benefits, increase shutdown margin by almost 1.0% Ap, reduce fuel cycle costs by nearly 30%, and improve axial power distribution control.