ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
Greg Wojtowicz, James Paul Holloway
Nuclear Science and Engineering | Volume 121 | Number 1 | September 1995 | Pages 89-102
Technical Paper | doi.org/10.13182/NSE95-A24131
Articles are hosted by Taylor and Francis Online.
A variational coarse-mesh technique is developed for the solution of the multigroup neutron transport equation in one-dimensional reactor lattices. In contrast to conventional nodal lattice applications that discretize diffusion theory and use node homogenized cross sections, the methods used here retain the spatial dependence of the cross sections and instead employ an alternative flux representation, a slowly modulated pin cell flux, that allows the neutron transport equation to be cast into a form whose solution has a relatively slow spatial and angular variation and that can be accurately described with relatively few variables. This alternative flux representation and the stationary property of a variational principle define a class of coarse-mesh discretizations of transport theory that are capable of achieving order-of-magnitude reductions of eigenvalue and pointwise scalar flux errors compared with diffusion theory while retaining the relatively low cost of diffusion theory.