ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
Charles F. Karlson
Nuclear Science and Engineering | Volume 121 | Number 1 | September 1995 | Pages 57-66
Technical Paper | doi.org/10.13182/NSE95-A24129
Articles are hosted by Taylor and Francis Online.
A method for the generation of in-core constants from the SIMULATE-3 advanced reactor analysis code is presented. This method builds on prior work at the Southern California Edison Company for the San Onofre Nuclear Generating Station and is now applied to the Combustion Engineering System 80 units at the Palo Verde Nuclear Generating Station (PVNGS). Power-to-signal ratios, assembly coupling coefficients, pin peaking factors, and Fourier Series analysis are shown to reproduce the SIMULATE-3 solution extremely well. Correction of SIMULATE-3 calculated in-core detector fluxes and cross sections for rhodium shielding and homogeneous-to-heterogeneous geometries are discussed. Calculated and measured detector signals are compared to confirm the ability to calculate the rhodium reaction rates needed for the power-to-signal ratio and are found to be within 2%.Core maximum power peaking factors and a radial assembly power distribution for PVNGS Unit 3 cycle 5 show excellent agreement with differences <2% in maximum power locations. This work is the basis for future improved reactor surveillance methods, with the realization of significant thermal margin gains from reduced uncertainties in the core protection system.