ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
Debdas Biswas, Roy W. Rathbun, Si Young Lee, Melvin R. Buckner
Nuclear Science and Engineering | Volume 121 | Number 1 | September 1995 | Pages 1-16
Technical Paper | doi.org/10.13182/NSE95-A24124
Articles are hosted by Taylor and Francis Online.
Studies have been conducted to demonstrate that weapons-grade plutonium can be readily disposed of by utilizing it as a fuel in pressurized water reactors (PWR). The disposition can be achieved by first fabricating the weapons-grade plutonium into a mixed-oxide (MOX) fuel form and then irradiating it in either advanced or existing PWRs to a depleted level similar to commercial spent fuel. Preliminary neutronics studies pertaining to safety-related core design using 100% weapons-grade MOX fuel are presented. The results demonstrate the feasibility of a small plutonium disposition reactor of 600-MW(electric) capacity called the PDR600, a large plutonium disposition reactor of 1400-MW(electric) capacity called the PDR1400, and a typical four-loop modified Westinghouse reactor. Feasible loading patterns are obtained for the initial and equilibrium cycles using discrete borosilicate glass burnable absorbers and a heavy loading of zirconium diboride integral fuel burnable absorbers in every fuel rod. The preliminary core physics results include information on soluble boron concentration, peaking factors, Doppler and moderator reactivity coefficients, boron, xenon and control rod worths, shutdown margin and delayed neutron parameters. The core design for weapons-grade plutonium disposition can be achieved with minimum changes in the present safety and licensing criteria of advanced or existing PWRs.