ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Debdas Biswas, Roy W. Rathbun, Si Young Lee, Melvin R. Buckner
Nuclear Science and Engineering | Volume 121 | Number 1 | September 1995 | Pages 1-16
Technical Paper | doi.org/10.13182/NSE95-A24124
Articles are hosted by Taylor and Francis Online.
Studies have been conducted to demonstrate that weapons-grade plutonium can be readily disposed of by utilizing it as a fuel in pressurized water reactors (PWR). The disposition can be achieved by first fabricating the weapons-grade plutonium into a mixed-oxide (MOX) fuel form and then irradiating it in either advanced or existing PWRs to a depleted level similar to commercial spent fuel. Preliminary neutronics studies pertaining to safety-related core design using 100% weapons-grade MOX fuel are presented. The results demonstrate the feasibility of a small plutonium disposition reactor of 600-MW(electric) capacity called the PDR600, a large plutonium disposition reactor of 1400-MW(electric) capacity called the PDR1400, and a typical four-loop modified Westinghouse reactor. Feasible loading patterns are obtained for the initial and equilibrium cycles using discrete borosilicate glass burnable absorbers and a heavy loading of zirconium diboride integral fuel burnable absorbers in every fuel rod. The preliminary core physics results include information on soluble boron concentration, peaking factors, Doppler and moderator reactivity coefficients, boron, xenon and control rod worths, shutdown margin and delayed neutron parameters. The core design for weapons-grade plutonium disposition can be achieved with minimum changes in the present safety and licensing criteria of advanced or existing PWRs.