ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Kazuo Shin, Hideo Hirayama
Nuclear Science and Engineering | Volume 120 | Number 3 | July 1995 | Pages 211-222
Technical Paper | doi.org/10.13182/NSE95-A24120
Articles are hosted by Taylor and Francis Online.
An approximating formula recently proposed by the authors for gamma-ray buildup factors of multilayered shields is applied to point isotropic source problems.The formula, which is formulated in vector form with a four-group approximation, handles the gamma-ray energy spectrum directly and uses the transmission and albedo matrices to take gamma-ray transmission and back-scattering effects into consideration. The gamma-ray transmission and back-scattering probabilities through a 1-mean-free-path- (mfp-) thick shell depend on the shell curvature. This phenomenon plays an important role in simulating the gamma-ray buildup factor in point isotropic source geometry. In this model, the dependence is described by simplified expressions. The feasibility of the formula for systematically describing the point isotropic buildup factors was tested by using buildup factors calculated by the Monte Carlo method as reference data. The materials used in the tests were water, iron, and lead, and the source energies assumed were 0.5, 1, and 10MeV. Through the tests, the method was found to reproduce the reference data of double-layered shields of these materials very well. With the same parameters, the buildup factors of three-layered shields are also reproducible. Buildup factors computed with two different group structures were examined to test the adequacy of the energy group structure adopted. The group structure previously adopted was found to be adequate in the energy range of 0.5 to 10 MeV