ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Kazuo Shin, Hideo Hirayama
Nuclear Science and Engineering | Volume 120 | Number 3 | July 1995 | Pages 211-222
Technical Paper | doi.org/10.13182/NSE95-A24120
Articles are hosted by Taylor and Francis Online.
An approximating formula recently proposed by the authors for gamma-ray buildup factors of multilayered shields is applied to point isotropic source problems.The formula, which is formulated in vector form with a four-group approximation, handles the gamma-ray energy spectrum directly and uses the transmission and albedo matrices to take gamma-ray transmission and back-scattering effects into consideration. The gamma-ray transmission and back-scattering probabilities through a 1-mean-free-path- (mfp-) thick shell depend on the shell curvature. This phenomenon plays an important role in simulating the gamma-ray buildup factor in point isotropic source geometry. In this model, the dependence is described by simplified expressions. The feasibility of the formula for systematically describing the point isotropic buildup factors was tested by using buildup factors calculated by the Monte Carlo method as reference data. The materials used in the tests were water, iron, and lead, and the source energies assumed were 0.5, 1, and 10MeV. Through the tests, the method was found to reproduce the reference data of double-layered shields of these materials very well. With the same parameters, the buildup factors of three-layered shields are also reproducible. Buildup factors computed with two different group structures were examined to test the adequacy of the energy group structure adopted. The group structure previously adopted was found to be adequate in the energy range of 0.5 to 10 MeV