ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
B. Akherraz, C. Fedon-Magnaud, J. J. Lautard, R. Sanchez
Nuclear Science and Engineering | Volume 120 | Number 3 | July 1995 | Pages 187-198
Technical Paper | doi.org/10.13182/NSE95-A24118
Articles are hosted by Taylor and Francis Online.
Three approaches are presented to treat anisotropic scattering in neutron transport. The approaches are based on the even-odd-parity flux formalism and yield three different second-order equations for the even-parity flux. The first one is based on the total elimination of the odd-parity flux of the second-order equation. In the other two approaches, anisotropic scattering contributions are homogenized and incorporated into the collision term. The numerical solutions of these equations are implemented in the CRONOS code for pressurized water reactor core calculations and are done with a finite element spatial approximation and the discrete ordinates methods (SN) for the angular variable. Numerical results are presented for critical problems (keff) in x-y geometry. Comparisons with the APOLL02 assembly code show the accuracy and the efficiency of the proposed algorithms.