ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
Franz X. Gallmeier
Nuclear Science and Engineering | Volume 120 | Number 2 | June 1995 | Pages 102-109
Technical Paper | doi.org/10.13182/NSE95-A24111
Articles are hosted by Taylor and Francis Online.
A new option KCORR for calculating the eigenvalue keff of fission reactor arrangements has been implemented in the MCNP Monte Carlo code. This option is based on a matrix method and has the additional feature of applying correlated sampling methods to investigate small reactivity effects that are very likely lost in the statistical uncertainties of two independent program runs with the old option KCODE. For verification of the new program option, calculations of the reactivity worths of the control rod and the safety rod of the FOEHN reactor and the reactivity effects of various components in the reflector pool of the FOEHN reactor were performed with both KCODE and KCORR and compared with measured data. The efficiency of MCNP in calculating reactivity changes by using KCORR is improved not only by means of lower statistical uncertainties but also by reduction of computing time.