ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Franz X. Gallmeier
Nuclear Science and Engineering | Volume 120 | Number 2 | June 1995 | Pages 102-109
Technical Paper | doi.org/10.13182/NSE95-A24111
Articles are hosted by Taylor and Francis Online.
A new option KCORR for calculating the eigenvalue keff of fission reactor arrangements has been implemented in the MCNP Monte Carlo code. This option is based on a matrix method and has the additional feature of applying correlated sampling methods to investigate small reactivity effects that are very likely lost in the statistical uncertainties of two independent program runs with the old option KCODE. For verification of the new program option, calculations of the reactivity worths of the control rod and the safety rod of the FOEHN reactor and the reactivity effects of various components in the reflector pool of the FOEHN reactor were performed with both KCODE and KCORR and compared with measured data. The efficiency of MCNP in calculating reactivity changes by using KCORR is improved not only by means of lower statistical uncertainties but also by reduction of computing time.