ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
M. Salvatores, I. Slessarev, M. Uematsu
Nuclear Science and Engineering | Volume 120 | Number 1 | May 1995 | Pages 18-39
Technical Paper | doi.org/10.13182/NSE95-A24103
Articles are hosted by Taylor and Francis Online.
This paper considers ways to approach radiologically clean nuclear power (RCNP), i.e., an energy production technology based on a natural nuclear fuel transmutation with a simultaneous fission product transformation into stable or short-lived nuclei. Ways to limit the long-term radiotoxicity accumulation in the fuel cycle, both related to actinides and to long-lived fission products, and to limit the radiological risk related to the in-core nuclear fuel inventory are defined. Criteria and guidelines are defined in that perspective, and they are applied to the evaluation of different options such as open or closed fuel cycles, burnup extension, type of neutron spectrum, use of thorium or uranium fuel cycle, and subcriticality in the multiplying region. Meanwhile, understanding the physics implications of the requirements for an RCNP reveals that there are promising ways to improve current systems. Ideal systems, which are defined to exploit all the desirable physics features to make them better in terms of environmental impact, show potential advantages, but they are never so spectacular—and certainly are to be taken extremely carefully—in view of the need of complementary technological feasibility and cost and safety analyses, Moreover, the problem of radiation doses, which is essential for fuel cycle management and could appreciably influence the choice of the appropriate fuel cycle, have not yet been taken into account. This last aspect and more specific safety analyses, together with cost-benefit evaluations, will be the subject of future investigations.