ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
S. Hlaváč, P. Obložinský, L. Dostál, I. Turzo, H. Vonach, A. Pavlik, S. Simakov
Nuclear Science and Engineering | Volume 119 | Number 3 | March 1995 | Pages 195-202
Technical Paper | doi.org/10.13182/NSE95-A24085
Articles are hosted by Taylor and Francis Online.
The gamma radiation from the interaction of 14.7-MeV neutrons with 208Pb is investigated by high-resolution germanium-detector gamma-ray spectroscopy by using an enriched 208Pb sample. Cross sections for 14 gamma-ray lines from the 208Pb(n,n′γ) and 208Pb(n,2nγ) reactions are measured at an emission angle of 124 deg. The results are compared with measurements from previous studies and with predictions based on the statistical theory of nuclear reactions (including direct and precompound contributions). The current results, especially for the 208Pb(n,n′γ) reaction, are considerably smaller than the results of most of the measurements of the previous studies probably because of the neglect of important sources of background, e.g., gamma-ray production in lead shielding, in the previous studies. Agreement with theory is adequate for the strong transitions between the lowest levels in 207Pb and 208Pb, but large discrepancies exist for the weaker transitions, especially for gamma-ray transitions from levels where experimental knowledge of branching ratios is missing.