ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
S. Hlaváč, P. Obložinský, L. Dostál, I. Turzo, H. Vonach, A. Pavlik, S. Simakov
Nuclear Science and Engineering | Volume 119 | Number 3 | March 1995 | Pages 195-202
Technical Paper | doi.org/10.13182/NSE95-A24085
Articles are hosted by Taylor and Francis Online.
The gamma radiation from the interaction of 14.7-MeV neutrons with 208Pb is investigated by high-resolution germanium-detector gamma-ray spectroscopy by using an enriched 208Pb sample. Cross sections for 14 gamma-ray lines from the 208Pb(n,n′γ) and 208Pb(n,2nγ) reactions are measured at an emission angle of 124 deg. The results are compared with measurements from previous studies and with predictions based on the statistical theory of nuclear reactions (including direct and precompound contributions). The current results, especially for the 208Pb(n,n′γ) reaction, are considerably smaller than the results of most of the measurements of the previous studies probably because of the neglect of important sources of background, e.g., gamma-ray production in lead shielding, in the previous studies. Agreement with theory is adequate for the strong transitions between the lowest levels in 207Pb and 208Pb, but large discrepancies exist for the weaker transitions, especially for gamma-ray transitions from levels where experimental knowledge of branching ratios is missing.