ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
K. L. Thomsen
Nuclear Science and Engineering | Volume 119 | Number 3 | March 1995 | Pages 167-174
Technical Paper | doi.org/10.13182/NSE95-A24082
Articles are hosted by Taylor and Francis Online.
The coupled collision probability and interface-current equations in the flat-flux, isotropic approximation are implemented in a light water reactor (LWR) lattice code that is under development. By using traditional Gaussian elimination of the subregion fluxes of the cells, the interface-current equations are turned into a nodal form. In the transformed flux and current equations, expressed in terms of response matrix theory, the coefficients become multiple-flight probabilities, which obey analogous conservation and reciprocity relations as the first-flight probabilities. The convergence of the iterative solution for the interface currents is accelerated by successive overrelaxation (SOR) and global rebalancing techniques. The improvement of the convergence rate is investigated in a series of test calculations. The optimal strategy is found to be alternation between one SOR iteration and three to four free iterations while the rebalancing should be limited to two initial iterations in normal LWR cases.