ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
N. N. Ponomarev-Stepnoi, V. G. Bubelev, Ye. S. Glushkov, G. V. Kompaniets, V. I. Nosov
Nuclear Science and Engineering | Volume 119 | Number 2 | February 1995 | Pages 108-115
Technical Paper | doi.org/10.13182/NSE95-A24075
Articles are hosted by Taylor and Francis Online.
The hydrogen content of zirconium hydride blocks used as the moderator in Topaz-2-type space reactors is estimated according to correlation-regression analysis procedures of mathematical statistics and is based on the results of the definition of the reactivity of the blocks in a research critical assembly. A linear mathematical model for a variable response is formulated within the framework of the first-order perturbation theory applied to the estimation of reactivity effects in reactors. A PASPORT computer code is written based on the developed algorithm. The statistical analysis of the available data performed by using PASPORT shows that the developed approach allows determination of the insignificance of the contribution of the impurities to the reactivity of the blocks, verification of the manufacturer’s data on the hydrogen content in zirconium hydride blocks, and estimation of the reactivity shift in a standard block.