ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
M. W. Mickael
Nuclear Science and Engineering | Volume 119 | Number 1 | January 1995 | Pages 34-43
Technical Paper | doi.org/10.13182/NSE95-A24069
Articles are hosted by Taylor and Francis Online.
A fast automated method is developed to estimate particle importance in the Los Alamos Monte Carlo code MCNP. It provides an automated and efficient way of predicting and setting up an important map for the weight windows technique. A short analog simulation is first performed to obtain effective group parameters based on the input description of the problem. A solution of the multigroup time-dependent adjoint diffusion equation is then used to estimate particle importance. At any point in space, time, and energy, the particle importance is determined, based on the calculated parameters, and used as the lower limit of the weight window. The method has been tested for neutron, photon, and coupled neutron-photon problems. Significant improvement in the simulation efficiency is obtained using this technique at no additional computer time and with no prior knowledge of the nature of the problem. Moreover, time and angular importance that are not available yet in MCNP are easily implemented in this method.