ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
B. T. Adams, J. E. Morel
Nuclear Science and Engineering | Volume 115 | Number 3 | November 1993 | Pages 253-264
Technical Paper | doi.org/10.13182/NSE115-253
Articles are hosted by Taylor and Francis Online.
A two-grid acceleration scheme for the multigroup Sn equations with neutron upscattering is developed. Although it has been tested only in one-dimensional slab geometry with linear-discontinuous spatial differencing, previous experience suggests that it should be applicable in any geometry with any spatial differencing scheme for which an unconditionally efficient diffusion-synthetic acceleration scheme exists. The method is derived, theoretically analyzed, and computationally tested. The results indicate that the scheme is unconditionally effective in terms of error reduction per iteration and highly efficient in terms of computational cost.