ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
R. A. Schrack, O. A. Wasson,D. C. Larson, J. K. Dickens, J. H. Todd
Nuclear Science and Engineering | Volume 114 | Number 4 | August 1993 | Pages 352-362
Technical Paper | doi.org/10.13182/NSE93-A24044
Articles are hosted by Taylor and Francis Online.
Relative cross-section measurements for the 10B(n, α1γ)7Li reaction were made using the Oak Ridge Electron Linear Accelerator Laboratory neutron source. The cross sections were measured by observing the 478-keV photon using an intrinsic germanium detector. The neutron flux was monitored with a high-efficiency plastic scintillator. Monte Carlo calculations were used to provide multiple-scattering and neutron-attenuation corrections to the data. The measured cross sections differ as much as 40% from the ENDF/B-VI evaluation for incident neutron energies greater than 1.5 MeV.