ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
Gregory D. Spriggs
Nuclear Science and Engineering | Volume 114 | Number 4 | August 1993 | Pages 342-351
Technical Paper | doi.org/10.13182/NSE92-78
Articles are hosted by Taylor and Francis Online.
An-in-pile experimental technique to measure the decay constants and the relative abundances of the delayed neutron groups applicable for a given reactor system is presented. The method is based on a least-squares-fitting technique that simultaneously fits a series of transients produced by small reactivity perturbations to a reactor operating initially at delayed critical. The function that is least-squares fit is the analytic solution (written in terms of an arbitrary number of delayed neutron groups) as obtained by the point reactor model for the reactor response following a step change in reactivity. The application of the method does not require any knowledge of the size of the reactivity perturbations, and the method is independent of the detector efficiency. The results are based solely on the measurable quantities of relative power, time, and one measurable root of the Inhour equation.