ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
Robert P. Rulko, Edward W. Larsen
Nuclear Science and Engineering | Volume 114 | Number 4 | August 1993 | Pages 271-285
Technical Paper | doi.org/10.13182/NSE93-A24040
Articles are hosted by Taylor and Francis Online.
Even-order PN theory has historically been viewed as a questionable approximation to transport theory. The main reason is that one obtains an odd number of unknowns and equations; this causes an ambiguity in the prescription of boundary conditions. We derive the one-group planar-geometry P2 equations and associated boundary conditions using a simple, physically motivated variational principle. We also present numerical results comparing P2, P1, and SN calculations. These results demonstrate that for most problems, the P2 equations with variational boundary conditions are considerably more accurate than the P1 equations with either the Marshak or the Federighi-Pomraning boundary conditions (both of which have also been derived variationally). Moreover, because the P2 and P1 equations can be written in diffusion form, the discretized P2 equations require nearly the same computational effort to solve as the discretized P1 equations. Our variational method can easily be extended to higher even-order PN approximations.