ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ARG-US Remote Monitoring Systems: Use Cases and Applications in Nuclear Facilities and During Transportation
As highlighted in the Spring 2024 issue of Radwaste Solutions, researchers at the Department of Energy’s Argonne National Laboratory are developing and deploying ARG-US—meaning “Watchful Guardian”—remote monitoring systems technologies to enhance the safety, security, and safeguards (3S) of packages of nuclear and other radioactive material during storage, transportation, and disposal.
Katsuhei Kobayashi, Samyol Lee, Shuji Yamamoto, Toshihiko Kawano
Nuclear Science and Engineering | Volume 146 | Number 2 | February 2004 | Pages 209-220
Technical Paper | doi.org/10.13182/NSE04-A2404
Articles are hosted by Taylor and Francis Online.
The neutron capture cross section of 99Tc has been measured relative to the 10B(n,) standard cross section by the neutron time-of-flight (TOF) method in the energy range of 0.005 eV to 47 keV using a detection assembly of Bi4Ge3O12 scintillators and a 46-MeV electron linear accelerator at the Kyoto University, Research Reactor Institute. The relative measurement has been normalized at 0.0253 eV to the reference value (22.9 ± 1.3 b) measured by Harada et al. The energy-dependent experimental data and the evaluated data in ENDF/B-VI, JENDL-3.2, JENDL-3.3, and JEF-2.2 are in general agreement with the current measurement. In particular, the JENDL-3.3 data, which have been released recently, show better agreement with the measurement in the lower-energy region.The resonance parameters at 5.6 and 20.3 eV have been analyzed by the KALMAN system using the current TOF data. The resonance integral calculated with the parameters obtained is derived to be 330 ± 19 b, which is close to the data obtained from JENDL-3.3 and evaluated by Mughabghab, although the resonance integrals from JENDL-3.2, ENDF/B-VI, and JEF-2.2 are smaller by ~6 to 8% than the current value. The resonance integral data measured by Harada et al. is larger by ~20%.