ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Katsuhei Kobayashi, Samyol Lee, Shuji Yamamoto, Toshihiko Kawano
Nuclear Science and Engineering | Volume 146 | Number 2 | February 2004 | Pages 209-220
Technical Paper | doi.org/10.13182/NSE04-A2404
Articles are hosted by Taylor and Francis Online.
The neutron capture cross section of 99Tc has been measured relative to the 10B(n,) standard cross section by the neutron time-of-flight (TOF) method in the energy range of 0.005 eV to 47 keV using a detection assembly of Bi4Ge3O12 scintillators and a 46-MeV electron linear accelerator at the Kyoto University, Research Reactor Institute. The relative measurement has been normalized at 0.0253 eV to the reference value (22.9 ± 1.3 b) measured by Harada et al. The energy-dependent experimental data and the evaluated data in ENDF/B-VI, JENDL-3.2, JENDL-3.3, and JEF-2.2 are in general agreement with the current measurement. In particular, the JENDL-3.3 data, which have been released recently, show better agreement with the measurement in the lower-energy region.The resonance parameters at 5.6 and 20.3 eV have been analyzed by the KALMAN system using the current TOF data. The resonance integral calculated with the parameters obtained is derived to be 330 ± 19 b, which is close to the data obtained from JENDL-3.3 and evaluated by Mughabghab, although the resonance integrals from JENDL-3.2, ENDF/B-VI, and JEF-2.2 are smaller by ~6 to 8% than the current value. The resonance integral data measured by Harada et al. is larger by ~20%.