ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Canada begins regulatory approval process for spent fuel repository
Canada has formally initiated the regulatory process of licensing its proposed deep geological repository for spent nuclear fuel, with the country’s Nuclear Waste Management Organization (NWMO) announcing that it has submitted an initial project description to the Canadian government.
According to the NWMO, the initial project description is a foundational document, detailing the repository’s purpose, need, and expected benefits and explaining how the project will be implemented. It also provides a preliminary assessment of potential impacts and describes measures to avoid or mitigate them. The NWMO is the not-for-profit organization responsible for managing Canada’s nuclear waste.
James W. Bryson, John C. Lee, Jeré A. Hassberger
Nuclear Science and Engineering | Volume 114 | Number 3 | July 1993 | Pages 238-251
Technical Paper | doi.org/10.13182/NSE93-A24037
Articles are hosted by Taylor and Francis Online.
Two methods are presented for optimally calculating spatial distributions of neutron flux in a nuclear reactor core. Both techniques, Kalman filtering and maximum likelihood estimation, simultaneously account for all initial information contained in the nominal core specifications and in-core measurements, as well as all of the uncertainties within the system, to provide a minimum variance estimate of neutron flux. These methods resolve discrepancies in the initial information in a statistically optimal manner, thereby providing valuable insight into the nature of the optimal solution obtained. Despite radically different algorithms, both methods yield the same minimum variance estimate for the quantity of interest. The algorithms have been successfully tested for one-dimensional axial and two-dimensional x-y flux mapping problems with simulated in-core data sets.