An intense reusable source of pulsed photoneutrons is developed that produces ≈0.5 or 1.0 × 1014 neutrons in an ∼15-ns pulse from natural lead or depleted uranium, respectively, on the HERMES III electron accelerator. Corresponding to this source, a numerical model is developed that is applicable to other pulsed-power systems. If Vp represents the peak voltage of HERMES III measured in megavolts, then model predictions show that over the range 12 MV < Vp< 20 MV, the number of neutrons produced per incident electron is 7.2 × 10-6(VP — 11)2.0 and 1.2 × 10-6(VP — 7.4)2 8 in lead and uranium, respectively. Measurements using a set of nuclear activation foils confirm these predictions as well as predictions of the spatial and spectral distribution of the neutrons at Vp = 19 MV.