ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Amazon provides update on its Washington project with X-energy
A year ago this month, Amazon led a $500 million investment in X-energy, alongside Citadel founder Ken Griffin, the University of Michigan, and other investors. In addition to that financing, Amazon pledged to support the development of an initial four-unit, 320-MW project with Energy Northwest in Washington state.
Mark J. Harper
Nuclear Science and Engineering | Volume 114 | Number 2 | June 1993 | Pages 118-123
Technical Paper | doi.org/10.13182/NSE93-A24023
Articles are hosted by Taylor and Francis Online.
A theoretical model was developed to predict the amount of nucleation that occurs as a result of neutron interactions in superheated liquids. The model utilizes nuclear cross-section data, charged-particle linear energy transfer information, and computations of critical bubble nucleation energy to generate the number of bubbles formed in superheated liquid droplet (“bubble”) neutron detectors exposed to neutron fluxes of specified intensity and energy. Previous experimental attempts to relate effective (energy-depositing) ion track length L to critical bubble radius rc using a dimension-less coefficient were unsuccessful. The formulation of a new coefficient b, equal to the ratio of effective ion track length L to the seed bubble radius ro is now proposed. By parameterizing the value of b within the model, the least-squares best value of b was determined to be 4.3 for both high- and low-energy 252Cf neutrons. Thus, the effective recoil ion track length in radiation-induced nucleation can be determined if the seed bubble radius is known.