ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
T. J. van Rooyen, G. P. de Beer
Nuclear Science and Engineering | Volume 114 | Number 2 | June 1993 | Pages 87-101
Technical Paper | doi.org/10.13182/NSE93-A24020
Articles are hosted by Taylor and Francis Online.
Prompt fission neutrons (PFNs) constitute the most important component of the source term for nuclear reactor shielding calculations. The determination of the PFN source term for reactor shielding calculations has traditionally been performed using a number of simplifying assumptions. Very simple closed analytical expressions are normally used for the PFN spectrum. The Watt PFN spectrum for 235U, with coefficients determined by Cranberg et al., has become a virtual industry standard in the reactor shielding community. The source term is usually treated as a separable function of spatial location and energy, only the 235U spectrum is considered, and the effect of burnup on the source term is neglected. In reality, the PFN spectra of 235U, 238U, and 239Pu differ markedly, and their fractional contributions to fission are a function of burnup, which, in turn, is a time-dependent function of the spatial position within the reactor core. Recent theoretical developments have led to the advent of sophisticated microscopic models for the calculation of PFN spectra and multiplicities of various fissioning systems. Spectra for 235U, 238U, and 239Pu, calculated with the Madland-Nix model with fragment spin correction, were used in this investigation. An improved reactor source term model that calculates spectrally and spatially burnup-compensated source terms for nuclear reactor shielding calculations is developed and applied to a typical light water reactor (LWR).,Neutron, gamma-ray, and total absorbed dose rate distributions were calculated through four diverse biological shields with a thickness of 250 cm. At end-of-life core conditions, the traditional source term model leads to an underestimate of the transmitted absorbed dose rates by slightly more than a factor of 2. This discrepancy lies within the error margins quoted for LWR shielding calculations. We conclude that despite their age and simplicity, the Watt formula and the simple source term model are of sufficient accuracy for continued service. The more rigorous source term model presented here may be useful for accurate benchmark calculations and for the design of highly efficient shields for high-burnup reactors.