ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
T. Uegata, E. Saji, H. Tanaka
Nuclear Science and Engineering | Volume 114 | Number 1 | May 1993 | Pages 81-85
Technical Notes | doi.org/10.13182/NSE93-A24017
Articles are hosted by Taylor and Francis Online.
Intranodal pin power distributions calculated by the CASMO-3/SIMULATE-3 code have been compared with pin gamma scan measurements. These data were obtained from the depleted core of an operating boiling water reactor (BWR), which is more complicated than a pressurized water reactor to calculate because of the existence of coolant void distributions and cruciform control blades. Furthermore, measured bundles include mixed-oxide (MOX) bundles in which steep thermal flux gradients occur. Both UO2 and MOX bundles have been calculated in the same manner based on the standard CASMO-3/SIMULATES methods. The total pin power root-mean-square (rms) error is 2.7%, which includes measurement error, from an 896-point comparison. There is no obvious dependency on axial elevations (void fractions) and no significant difference between fuel types (UO2 or MOX), although the errors in a peripheral bundle, which is less important from the standpoint of core design, are somewhat larger than those in the internal bundles. If the peripheral bundle is excluded, the total rms error is reduced to 2.2%. From these results, it is concluded that excellent agreement has been obtained between the calculations and measurements and that the calculational capability of CASMO-3/ SIMULATES for the intranodal pin power distribution is quite satisfactory and useful for BWR core design.