ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Chang-Ho Lee, Thomas J. Downar
Nuclear Science and Engineering | Volume 146 | Number 2 | February 2004 | Pages 176-187
Technical Paper | doi.org/10.13182/NSE04-A2401
Articles are hosted by Taylor and Francis Online.
A hybrid nodal diffusion/simplified P3 (SP3) method was implemented within the framework of a one-node coarse-mesh finite difference formulation. The one-node formulation enables the use of various combinations of space, energy, and angular approximations within the framework of the one-node global/local solution approach. Spatial approximations include advanced nodal methods and fine-mesh finite difference methods. Energy approximations involve conventional two-group and multiple energy groups. Angular approximations contain both the diffusion and SP3 methods. Partial-moment boundary conditions are used to solve the one-node problems since they simplify the formulation of consistent interface conditions for the various methods. All directional moments are determined simultaneously to stabilize convergence of the one-node global/local solution approach. Results for a light water reactor mixed-oxide benchmark problem indicate that the hybrid application of the one-node-based nodal SP3 method developed here can provide substantial reductions in the computational time without compromising the accuracy of the solution.