ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Edward W. Larsen
Nuclear Science and Engineering | Volume 112 | Number 4 | December 1992 | Pages 336-346
Technical Paper | doi.org/10.13182/NSE92-A23982
Articles are hosted by Taylor and Francis Online.
A well-known asymptotic analysis describes the transition of transport theory to diffusion theory in the limit of optically thick systems with small absorption and sources. Recently, this analysis has been applied to discretized transport algorithms. The results of this analysis, which provide information on accuracy and iteration efficiency, cannot be obtained from standard truncation error analyses because in the asymptotic limit, the optical thickness of a spatial cell generally tends to infinity. The ideas underlying this analysis are described, the main results are reviewed, and some open questions are discussed.